
A Gentle Introduction to ROS

Chapter: Graph resource names

Jason M. O’Kane

Jason M. O’Kane

University of South Carolina

Department of Computer Science and Engineering

315 Main Street

Columbia, SC 29208

http://www.cse.sc.edu/~jokane

©2014, Jason Matthew O’Kane. All rights reserved.

This is version 2.1.6(ab984b3), generated on April 24, 2018.

Typeset by the author using LATEX and memoir.cls.

ISBN 978-14-92143-23-9

http://www.cse.sc.edu/~jokane

Chapter 5

Graph resource names
In which we learn how ROS resolves the names of nodes, topics, parameters, and

services.

In Chapter 3, we used strings like "hello_ros" and "publish_velocity" to give names to

nodes, and strings like "turtle1/cmd_vel" and "turtle1/pose" as the names of topics.

All of these are examples of graph resource names. ROS has a flexible naming system

that accepts several different kinds of names. (These four, for example, are all relative

names.) In this chapter, we’ll take a short detour to understand the various kinds of graph

resource names, and how ROS resolves them. We present these ideas, which are actually

quite simple, as a separate chapter because they’re relevant to most of the concepts in the

second half of this book.

5.1 Global names

Nodes, topics, services, and parameters are collectively referred to as graph resources.

Every graph resource is identified by a short string called a graph resource name.Í1 Graph

resource names are ubiquitous, both in ROS command lines and in code. Both rosnode

info and ros::init expect node names; both rostopic echo and the constructor for ros::-

Publisher expect topic names. All of these are instances of graph resource names. Here

are some specific graph resource names that we’ve encountered already:

/teleop_turtle

/turtlesim

Í1http://wiki.ros.org/Names

77

http://wiki.ros.org/Names

5. GRAPH RESOURCE NAMES

/turtle1/cmd_vel

/turtle1/pose

/run_id

/count_and_log/set_logger_level

These names are all examples of a specific class of names called global names. They’re

called global names because they make sense anywhere they’re used. These names have

clear, unambiguous meanings, whether they’re used as arguments to one of the many

command line tools or inside a node. No additional context information is needed to de-

cide which resource the name refers to.

There are several parts to a global name:

R A leading slash /, which identifies the name as a global name.

R A sequence of zero or more namespaces, separated by slashes. Namespaces are used

to group related graph resources together. The example names above include two

explicit namespaces, called turtle1 and count_and_log. Multiple levels of name-

spaces are allowed, so this is also a valid (but rather unlikely) global name, consisting

of 11 nested namespaces:

/a/b/c/d/e/f/g/h/i/j/k/l

Global names that don’t explicitly mention any namespace—including three of the

examples above—are said to be in the global namespace.

R A base name that describes the resource itself. The base names in the example above

are teleop_turtle, turtlesim, cmd_vel, pose, run_id, and set_logger_level.

Notice that, if global names were required everywhere, then there would be little to

gain from the complexity of using namespaces, other than perhaps making it easier for

humans to keep track of things. The real advantage of this naming system comes from the

use of relative names and private names.

5.2 Relative names

The main alternative to providing a global name, which—as we’ve just seen—includes a

complete specification of the namespace in which the name lives, is to allow ROS to supply

a default namespace. A name that uses this feature is called a relative graph resource

name, or simply a relative name. The characteristic feature of a relative name is that it

lacks a leading slash (/). Here are some example relative names:

78

5.2. Relative names

teleop_turtle

turtlesim

cmd_vel

turtle1/pose

run_id

count_and_log/set_logger_level

The key to understanding relative names is to remember that relative names cannot be

matched to specific graph resources unless we know the default namespace that ROS is

using to resolve them.

Resolving relative names The process of mapping relative names to global names is ac-

tually quite simple. To resolve a relative name to a global name, ROS attaches the name

of the current default namespace to the front of the relative name. For example, if we use

the relative name cmd_vel in a place where the default namespace is /turtle1, then ROS

resolves the name by combining the two:

/turtle1
︸ ︷︷ ︸

default

namespace

+ cmd_vel
︸ ︷︷ ︸

relative name

⇒ /turtle1/cmd_vel
︸ ︷︷ ︸

global name

Relative names can also begin with a sequence of namespaces, which are treated as nested

namespaces inside the default namespace. As an extreme example, if we use the relative

name g/h/i/j/k/l in a place where the default namespace is /a/b/c/d/e/f, ROS performs

this combination:

/a/b/c/d/e/f
︸ ︷︷ ︸

default

namespace

+ g/h/i/j/k/l
︸ ︷︷ ︸

relative name

⇒ /a/b/c/d/e/f/g/h/i/j/k/l
︸ ︷︷ ︸

global name

The resulting global name is then used to identify a specific graph resource, just as though

a global name had been specified originally.

Setting the default namespace This default namespace is tracked individually for each

node, rather than being a system-wide setting. If you don’t take any specific steps to set the

default namespace, then ROS will, as you might expect, use the global namespace (/). The

best and most common method for choosing a different default namespace for a node or

group of nodes is to use ns attributes in a launch file. (See Section 6.3.) However, there are

also a couple of mechanisms for doing this manually.

79

5. GRAPH RESOURCE NAMES

R Most ROS programs, including all C++ programs that call ros::init, accept a com-

mand line parameter called __ns, which specifies a default namespace for that

program.

__ns:=default-namespace

R You can also set the default namespace for every ROS program executed within a

shell, using an environment variable.

export ROS_NAMESPACE=default-namespace

This environment variable is used only when no other default namespace is speci-

fied by the __ns parameter.

Understanding the purpose of relative names Aside from the question how to deter-

mine the default namespace used for relative names, one other likely question is “Who

cares?” At first glance, the concept of relative names appears to be just a shortcut to avoid

typing the full global names every time. Although relative names do provide this kind of

convenience, their real value is that they make it easier to build complicated systems by

composing smaller parts.

When a node uses relative names, it is essentially giving its users the ability to easily

push that node and the topics it uses down into a namespace that the node’s original de-

signers did not necessarily anticipate. This kind of flexibility can make the organization of

a system more clear and, more importantly, can prevent name collisions when groups of

nodes from different sources are combined. In contrast, every explicit global name makes

it harder to achieve this kind of composition. Therefore, when writing nodes, it’s recom-

mended to avoid using global names, except in the unusual situations where there is a very

good reason to use them.

5.3 Private names

Private names, which begin with a tilde (∼) character, are the third and final class of graph

resource names. Like relative names, private names do not fully specify the namespace in

which they live, and instead rely on the ROS client library to resolve the name to a complete

global name. The difference is that, instead of using the current default namespace, private

names use the name of their node as a namespace.

For instance, in a node whose global name is /sim1/pubvel, the private name ∼max-

_vel would be converted to a global name like this:

80

5.4. Anonymous names

/sim1/pubvel
︸ ︷︷ ︸

node name

+ ∼max_vel
︸ ︷︷ ︸

private name

⇒ /sim1/pubvel/max_vel
︸ ︷︷ ︸

global name

The intuition is that each node has its own namespace for things that are related only

to that node, and are not interesting to anyone else. Private names are often used for

parameters—roslaunch has a specific feature for setting parameters that are accessible

by private names; see page 113—and services that govern the operation of a node. It is

usually a mistake to use a private name to refer to a topic because, if we’re keeping our

nodes loosely coupled, no topic is “owned” by any particular node.

� Private names are private only in the sense that they are resolved into a namespace

that is unlikely to be used by any other nodes. Graph resources referred to by pri-

vate names remain accessible, via their global names, to any node that knows their

name. This is a contrast, for example, to the private keyword in C++ and similar lan-

guages, which prevents other parts of a system from accessing certain class mem-

bers.

5.4 Anonymous names

In addition to these three primary types of names, ROS provides one more naming mech-

anism called anonymous names, which are specifically used to name nodes. The purpose

of an anonymous name is to make it easier to obey the rule that each node must have a

unique name. The idea is that a node can, during its call to ros::init, request that a unique

name be assigned automatically.

To request an anonymous name, a node should pass ros::init_options::Anonymous-

Name as a fourth parameter to ros::init:

ros::init(argc, argv, base_name, ros::init_options::AnonymousName);

The effect of this extra option is to append some extra text to the given base name, ensuring

that the node’s name is unique.

¹ Although the details of what specific extra text is added are not particularly impor-

tant, it is interesting to note that ros::init uses the current wall clock time to form

anonymous names.

81

5. GRAPH RESOURCE NAMES

1 // This program starts with an anonymous name, which

2 // allows multiple copies to execute at the same time ,

3 // without needing to manually create dist inct names

4 // for each of them.

5 #inc lude <ros / ro s . h>

6

7 i n t main (i n t argc , char ∗∗ argv) {

8 ro s : : i n i t (argc , argv , "anon" ,

9 ro s : : i n i t_opt i on s : : AnonymousName) ;

10 ro s : : NodeHandle nh ;

11 ro s : : Rate r a t e (1) ;

12 whi le (ro s : : ok ()) {

13 ROS_INFO_STREAM("This ␣message␣ i s ␣ from␣"

14 << ros : : this_node : : getName ()) ;

15 r a t e . s l e e p () ;

16 }

17 }

Listing 5.1: A program called anon.cpp whose nodes have anonymous names. We can start as

many simultaneous copies of this program as we like, without any node name conflicts.

Listing 5.1 shows a sample program that uses this feature. Instead of simply being

named anon, nodes started from this program get names that look like this:

/anon_1376942789079547655

/anon_1376942789079550387

/anon_1376942789080356882

The program’s behavior is quite unremarkable, but because it requests an anonymous

name, we are free to run as many simultaneous copies of that program as we like, knowing

that each will be assigned a unique name when it starts.

5.5 Looking forward

In this chapter, we learned about how ROS interprets the names of graph resources. In par-

ticular, non-trivial ROS systems with many interacting nodes can benefit from the flexibil-

ity arising from using relative or private names. The next chapter introduces a tool called

roslaunch that simplifies the process of starting and configuring these kinds of multi-node

ROS sessions.

82

