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Chapter 4

Log messages
In which we generate and view log messages.

We have already seen, in the example programs from Chapter 3, a macro called ROS-

_INFO_STREAM that displays informative messages to the user. These messages are

examples of log messages. ROS provides a rich logging system that includes ROS_INFO-

_STREAM along with a number of other features. In this chapter, we’ll see how to use

that logging system.

4.1 Severity levels

The idea of ROS’s logging system—and, for the most part, software logging in general—is

to allow programs to generate a stream of short text strings called log messages. In ROS,

log messages are classified into five groups called severity levels, which are sometimes

called just severities and sometimes called just levels. The levels are, in order of increasing

importance:Í1

DEBUG

INFO

WARN

ERROR

FATAL

The idea is that DEBUG messages may be generated very frequently, but are not gener-

ally interesting when the program is working correctly. At the other end of the spectrum,

Í1http://wiki.ros.org/VerbosityLevels
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4. LOG MESSAGES

Severity Example message

DEBUG reading header from buffer

INFO Waiting for all connections to establish

WARN Less than 5GB of space free on disk

ERROR Publisher header did not have required element: type

FATAL You must call ros::init() before creating the first NodeHandle

Figure 4.1: Examples log messages for each severity level.

FATAL messages are likely to be very rare but very important, indicating a problem that

prevents the program from continuing. The other three levels, INFO, WARN, and ER-

ROR, represent intermediate degrees of importance between these two extremes. Fig-

ure 4.1 shows examples, from the ROS source, of each of these severity levels.

This variety of severity levels is intended to provide a consistent way to classify and

manage log messages. We’ll see shortly, for example, how to filter or highlight messages

based on their severity levels. However, the levels themselves don’t carry any inherent

meaning: Generating a FATAL message will not, in itself, end your program. Likewise,

generating a DEBUG message will not (alas) debug your program for you.

4.2 An example program

The remainder of this chapter deals with how to generate and view log messages. As

usual, it will be helpful to have a concrete example program to illustrate what’s going

on. It would be possible to use turtlesim for this purpose—under the right conditions,

turtlesim_node will produce log messages at every level except FATAL—but for learn-

ing purposes it will be more convenient to work with a program that produces lots of log

messages at predictable intervals.

Listing 4.1 shows a program that fits this description. It generates a steady stream of

messages at all five severity levels. An example of its console output appears in Listing 4.2.

We’ll use this as a running example throughout the rest of the chapter.

4.3 Generating log messages

Let’s have a more complete look at how to generate log messages from C++ code.

Generating simple log messages There are five basic C++ macros for generating log mes-

sages, one for each severity level:
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4.3. Generating log messages

1 // This program periodical ly generates log messages at

2 // various severity leve l s .

3 #inc lude <ros / ro s . h>

4

5 i n t main ( i n t argc , char ∗∗ argv ) {

6 // In i t i a l i z e the ROS system and become a node .

7 ro s : : i n i t ( argc , argv , "count_and_log" ) ;

8 ro s : : NodeHandle nh ;

9

10 // Generate log messages of varying severity regularly .

11 ro s : : Rate r a t e (10) ;

12 f o r ( i n t i = 1 ; ro s : : ok ( ) ; i++) {

13 ROS_DEBUG_STREAM("Counted␣ to ␣" << i ) ;

14 i f ( ( i % 3) == 0) {

15 ROS_INFO_STREAM( i << "␣ i s ␣ d i v i s i b l e ␣by␣ 3 . " ) ;

16 }

17 i f ( ( i % 5) == 0 ) {

18 ROS_WARN_STREAM( i << "␣ i s ␣ d i v i s i b l e ␣by␣ 5 . " ) ;

19 }

20 i f ( ( i % 10) == 0) {

21 ROS_ERROR_STREAM( i << "␣ i s ␣ d i v i s i b l e ␣by␣ 10 . " ) ;

22 }

23 i f ( ( i % 20) == 0) {

24 ROS_FATAL_STREAM( i << "␣ i s ␣ d i v i s i b l e ␣by␣ 20 . " ) ;

25 }

26 r a t e . s l e e p ( ) ;

27 }

28 }

Listing 4.1: A program called count.cpp that generates log messages at all five severity levels.

ROS_DEBUG_STREAM(message);

ROS_INFO_STREAM(message);

ROS_WARN_STREAM(message);

ROS_ERROR_STREAM(message);

ROS_FATAL_STREAM(message);

The message argument of each of these macros can handle exactly the kinds of expres-

sions that work with a C++ ostream, such as std::cout. This includes using the insertion

operator (<<) on primitive data types like int or double, on composite types for which
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1 [ INFO ] [ 1375889196 .165921375 ] : 3 i s d i v i s i b l e by 3 .

2 [ WARN] [1375889196 .365852904 ] : 5 i s d i v i s i b l e by 5 .

3 [ INFO ] [ 1375889196 .465844839 ] : 6 i s d i v i s i b l e by 3 .

4 [ INFO ] [ 1375889196 .765849224 ] : 9 i s d i v i s i b l e by 3 .

5 [ WARN] [1375889196 .865985094 ] : 10 i s d i v i s i b l e by 5 .

6 [ERROR] [1375889196 .866608041 ] : 10 i s d i v i s i b l e by 10 .

7 [ INFO ] [ 1375889197 .065870949 ] : 12 i s d i v i s i b l e by 3 .

8 [ INFO ] [ 1375889197 .365847834 ] : 15 i s d i v i s i b l e by 3 .

Listing 4.2: Sample output from running count for a few seconds. This output does not contain

any DEBUG-level messages, because the default minimum level is INFO.

that operator is properly overloaded, and on standard stream manipulators like std::fixed,

std::setprecision, or std::boolalpha.

� Stream manipulators are effective only for the log message in which they appear.

Any manipulators you would like to use must be re-inserted every time.

¹ Here’s why this limitation on stream manipulators exists: As their all-capital

names suggest, the ROS_. . . _STREAM constructions are macros. Each

expands to a short block of code that creates a std::stringstream and in-

serts the arguments you provide into that stream. The expanded code then

ships the fully-formatted contents of that std::stringstream to an internal

logging system, namely log4cxx.Í2 Because the std::stringstream is de-

stroyed when this process completes, its internal state, including any format-

ting configuration established by stream manipulators, is lost.

¹ If you prefer a printf-style interface instead of C++-style streams, there are also

macros whose names omit the _STREAM suffix. For example, the macro

ROS_INFO(format, . . . );

Í2http://wiki.apache.org/logging-log4cxx/
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generates INFO-level log messages. These macros work exactly as you might ex-

pect, at least if you’re familiar with printf. As a concrete example, the output line in

Listing 3.4 is roughly equivalent to:

ROS_INFO("position=(%0.2f,%0.2f) direction=%0.2f",

msg.x, msg.y, msg.theta);

There are also printf-style versions of the one time (. . . _ONCE) and throttled (. . . -

_THROTTLE) families of macros introduced below, again with names that omit

the _STREAM part.

Notice that there’s no need to use std::endl nor any other line terminator, because the

logging system is already line-oriented. Each call to any of these macros will generate a

single, complete log message which will be displayed as a single line.

Generating one-time log messages Sometimes, log messages that are generated inside

loops or in frequently-called functions are important to the user, but also irritatingly repet-

itive. One natural way to deal with these situations would be to use a static variable to

ensure that the message is generated only once, the first time it is reached. Listing 4.3

shows a C++ fragment that would accomplish this. To avoid repeating this cumbersome

block of code—Wrapping it in a function would not work, because this technique needs a

distinct static variable for each statement—ROS provides shorthand macros that generate

precisely these sorts of one-time only log messages.

ROS_DEBUG_STREAM_ONCE(message);

ROS_INFO_STREAM_ONCE(message);

ROS_WARN_STREAM_ONCE(message);

ROS_ERROR_STREAM_ONCE(message);

ROS_FATAL_STREAM_ONCE(message);

The first time these macros are encountered during a program’s execution, they generate

the same log messages as the corresponding non-ONCE versions. After that first execu-

tion, these statements have no effect. Listing 4.4 shows a minimal example, in which the

logging macros each generate one message, on the first iteration of the loop, and are ig-

nored on all future iterations.

Generating throttled log messages Similarly, there are macros for throttling the rate at

which a given log message appears.
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1 // Don' t do this direct ly . Use ROS_. . ._STREAM_ONCE instead .

2 {

3 s t a t i c bool f i r s t_t ime = true ;

4 i f ( f i r s t_t ime ) {

5 ROS_INFO_STREAM("Here ' s ␣some␣ important ␣ in fo rmat ion "

6 << "␣ that ␣ w i l l ␣ only ␣ appear ␣once . " ) ;

7 f i r s t_t ime = f a l s e ;

8 }

9 }

Listing 4.3: A fragment of C++ that disables a log message after its first execution. The

ROS_. . ._STREAM_ONCE macros expand to very similar code blocks.

1 // This program generates a single log message at each

2 // severity l eve l .

3 #inc lude <ros / ro s . h>

4

5 i n t main ( i n t argc , char ∗∗ argv ) {

6 ro s : : i n i t ( argc , argv , " log_once" ) ;

7 ro s : : NodeHandle nh ;

8

9 whi le ( ro s : : ok ( ) ) {

10 ROS_DEBUG_STREAM_ONCE("This ␣ appears ␣ only ␣once . " ) ;

11 ROS_INFO_STREAM_ONCE("This ␣ appears ␣ only ␣once . " ) ;

12 ROS_WARN_STREAM_ONCE("This ␣ appears ␣ only ␣once . " ) ;

13 ROS_ERROR_STREAM_ONCE("This ␣ appears ␣ only ␣once . " ) ;

14 ROS_FATAL_STREAM_ONCE("This ␣ appears ␣ only ␣once . " ) ;

15 }

16 }

Listing 4.4: A C++ program called once.cpp that generates only five log messages.

ROS_DEBUG_STREAM_THROTTLE(interval, message);

ROS_INFO_STREAM_THROTTLE(interval, message);

ROS_WARN_STREAM_THROTTLE(interval, message);

ROS_ERROR_STREAM_THROTTLE(interval, message);

ROS_FATAL_STREAM_THROTTLE(interval, message);

The interval parameter is a double that specifies the minimum amount of time, mea-

sured in seconds, that must pass between successive instances of the given log message.
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1 // This program generates log messages at varying severity

2 // levels , thrott led to various maximum speeds .

3 #inc lude <ros / ro s . h>

4

5 i n t main ( i n t argc , char ∗∗ argv ) {

6 ro s : : i n i t ( argc , argv , " l og_thro t t l ed " ) ;

7 ro s : : NodeHandle nh ;

8

9 whi le ( ro s : : ok ( ) ) {

10 ROS_DEBUG_STREAM_THROTTLE(0 . 1 ,

11 "This ␣ appears ␣ every ␣ 0 .1 ␣ seconds . " ) ;

12 ROS_INFO_STREAM_THROTTLE(0 . 3 ,

13 "This ␣ appears ␣ every ␣ 0 .3 ␣ seconds . " ) ;

14 ROS_WARN_STREAM_THROTTLE(0 . 5 ,

15 "This ␣ appears ␣ every ␣ 0 .5 ␣ seconds . " ) ;

16 ROS_ERROR_STREAM_THROTTLE(1 . 0 ,

17 "This ␣ appears ␣ every ␣ 1 .0 ␣ seconds . " ) ;

18 ROS_FATAL_STREAM_THROTTLE(2 . 0 ,

19 "This ␣ appears ␣ every ␣ 2 .0 ␣ seconds . " ) ;

20 }

21 }

Listing 4.5: A C++ program called throttle.cpp that shows throttled log messages.

Each instance of any ROS_. . . _STREAM_THROTTLE macro will generate its log

message the first time it is executed. Subsequent executions will be ignored, until the

specified amount of time has passed. The timeouts are tracked separately (using a local

static variable that stores the “last hit” time) for each instance of any of these macros.

Listing 4.5 shows a program that uses these macros to get behavior very similar to the

count program from Listing 4.1. The key difference, apart from the the content of the mes-

sages, is that the program in Listing 4.5 will consume more computation time, because it

uses polling, rather than timed sleeping, to decide when it’s time to generate new mes-

sages. This sort of polling is, in real programs, generally a bad idea.

4.4 Viewing log messages

So far, we’ve said quite a bit about how to create log messages, but very little about where

those messages actually go. There are actually three different destinations for log mes-
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sages: Each log message can appear as output on the console, as a message on the rosout

topic, and as an entry in a log file. Let’s see how to use each of these.

4.4.1 Console

First, and most visibly, log messages are sent to the console. Specifically, DEBUG and

INFO messages are printed on standard output, whereas WARN, ERROR, and FATAL

messages are sent to standard error.Í3

¹ The distinction here between standard output and standard error is basically irrel-

evant, unless you want to redirect one or both of these streams to a file or a pipe, in

which case it causes some complications. The usual file redirection technique

command > file

redirects standard output, but not standard error. To capture all of the log messages

to the same file, use something like this instead:

command &> file

Be careful, however, because differences in the way these two streams are buffered

can cause the messages to appear out of order—with DEBUG and INFO messages

appearing later than one might expect—in the result. You can force the messages

into their natural order by using the stdbuf command to convince standard output

to use line buffering:

stdbuf -oL command &> file

Finally, note that ROS inserts ANSI color codes—which look, to humans and to soft-

ware that does not understand them, something like this: ˆ[[0m—into its output,

even if the output is not being directed to a terminal. To view a file containing these

sorts of codes, try a command like this:

less -r file

Formatting console messages You can tweak the format used to print log messages on

the console by setting the ROSCONSOLE_FORMAT environment variable. This vari-

Í3http://wiki.ros.org/roscpp/Overview/Logging
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able will generally contain one or more field names, each denoted by a dollar sign and

curly braces, showing where the log message data should be inserted. The default format

is equivalent to:

[${severity}] [${time}]: ${message}

This format is probably suitable for most uses, but there are a few other fields that might

be useful:Í4

R To insert details about the source code location from which the message was gener-

ated, use some combination of the ${file}, ${line}, and ${function} fields.

R To insert the name of the node that generated the log message, use the ${node}

field.

� The roslaunch tool (which we’ll introduce in Chapter 6) does not, by default, funnel

standard output and standard error from the nodes it launches to its own output

streams. To see output from a roslaunched node, you must explicitly use the out-

put="screen" attribute, or force all nodes to have this attribute with the --screen

command-line parameter to roslaunch. See page 88.

4.4.2 Messages on rosout

In addition to appearing on the console, every log message is also published on the topic

/rosout. The message type of this topic is rosgraph_msgs/Log. Listing 4.6 shows the

fields in this data type, which includes the severity level, the message itself, and some other

associated metadata.

You might notice that the information in each of these messages is quite similar to

the details in the console output discussed above. The primary usefulness of the /rosout

topic, compared to the console output, is that it includes, in a single stream, log messages

from every node in the system. All of those log messages show up on /rosout, regardless

of where, when, or how their nodes were started, or even which computer they’re running

on.

Since /rosout is just an ordinary topic, you could, of course, use

Í4http://wiki.ros.org/rosconsole
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1 byte DEBUG=1

2 byte INFO=2

3 byte WARN=4

4 byte ERROR=8

5 byte FATAL=16

6 std_msgs/Header header

7 uint32 seq

8 time stamp

9 s t r i n g frame_id

10 byte l e v e l

11 s t r i n g name

12 s t r i n g msg

13 s t r i n g f i l e

14 s t r i n g func t i on

15 uint32 l i n e

16 s t r i n g [ ] t o p i c s

Listing 4.6: Fields in the rosgraph_msgs/Log message type.

rostopic echo /rosout

to see the messages directly. If you insist, could even write a program of your own to sub-

scribe to /rosout and display or process the messages however you like. However, the

simplest way to see /rosout messages is to use this command:Í5Í6

rqt_console

Figure 4.2 depicts the resulting GUI. It shows log messages from all nodes, one per line,

along with options to hide or highlight messages based on various kinds of filters. The GUI

itself should not need any extra explanation.

¹ The description of rqt_console above is not quite true. In fact, rqt_console sub-

scribes to /rosout_agg instead of /rosout. Here’s the true graph, when both our

count example and an instance of rqt_console are running:

Í5http://wiki.ros.org/ROS/Tutorials/UsingRqtconsoleRoslaunch

Í6http://wiki.ros.org/rqt_console
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Figure 4.2: The GUI for

rqt_console.

/rosout_agg

/rqt_gui_py_node

/rosout /rosout/count_and_log

The _agg suffix refers to the fact that messages are aggregated by the rosout node.

Every message published on the /rosout topic is echoed on the /rosout_agg topic

by the rosout node.

The reason for this apparent redundancy is to reduce the overhead of debugging.

Because each publisher-subscriber relationship leads to a direct network connec-

tion between the two nodes, subscribing to /rosout (for which every node is a

publisher) can be costly on systems with many nodes, especially when those nodes

generate many log messages. The idea is that the rosout node will be the only sub-

scriber to /rosout and the only publisher on /rosout_agg. Then debugging tools

can access the complete stream of log messages, without creating extra work for

every node in the system, by subscribing to /rosout_agg.

As an aside, ROS packages for some robots, including the PR2 and the TurtleBot,

use the same pattern for diagnostic messages, which are originally published on a

topic called /diagnostics and echoed by an aggregator node on another topic called

/diagnostics_agg.
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4.4.3 Log files

The third and final destination for log messages is a log file generated by the rosout node.

As part of its callback function for the /rosout topic, this node writes a line to a file with a

name like this:

∼/.ros/log/run_id/rosout.log

This rosout.log log file is a plain text file. It can be viewed with command line tools like

less, head, or tail, or with your favorite text editor. The run_id is a universally-unique

identifier (UUID) which is generated—based on your computer’s hardware MAC address

and the current time—when the master is started. Here’s an example run_id:

57aa1860-d765-11e2-a830-f0def1e189cc

The use of this sort of unique identifier makes it possible to distinguish logs from separate

ROS sessions.

Finding the run id There at least two easy ways to learn the run_id of the current ses-

sion.

R You can examine the output generated by roscore. Near the end of this output, you’ll

see a line that looks something like this.

setting /run_id to run_id

R You can ask the master for the current run_id, using a command like this:

rosparam get /run_id

This works because the run_id is stored on the parameter server. More details about

parameters are in Chapter 7.

Checking and purging log files These log files accumulate over time, which can be prob-

lematic if you use ROS for a while on a system that has meaningful limitations (due either

to an account quota or to hardware limits) on disk space. Both roscore and roslaunch per-

form checks to monitor the size of existing logs, and warn you when they exceed 1GB, but

neither will take any steps to reduce the size. You can use this command to see the amount

of disk space in the current user account consumed by ROS logs:Í7

rosclean check

Í7http://wiki.ros.org/rosclean
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If the logs are consuming too much disk space, you can remove all of the existing logs using

this command:

rosclean purge

You can also, if you prefer, delete the log files by hand.

4.5 Enabling and disabling log messages

If you executed the programs in Listings 4.1, 4.4, and 4.5 for yourself (or read the sample

output in Listing 4.2 carefully), you might have noticed that no DEBUG-level messages

are generated, even though those programs call the ROS_DEBUG_STREAM macro.

What happened to those DEBUG-level messages? The answer is that, by default, ROS C++

programs only generate log messages at the INFO level and higher; attempts to generate

DEBUG-level messages are discarded.

This is a specific example of the concept of logger levels, which specify, for each node,

a minimum severity level. The default logger level is INFO, which explains the absence of

DEBUG-level messages from our example program. The general idea behind logger levels

is to provide, at run time, the ability to regulate the level of detail for each node’s logs.

� Setting the logger level is somewhat similar to the severity filtering options in rqt-

_console. The difference is that changing the logger level prevents log messages

from ever being generated at their source, whereas the filters in rqt_console accept

any incoming log messages, and selectively choose not to display some of them.

Except for some overhead, the effect is similar.

¹ For log messages that are disabled by the logger level, the message expression is not

even evaluated. This is possible because ROS_INFO_STREAM and similar con-

structions are macros rather than function calls. The expansions of these macros

check whether the message is enabled, and only evaluate the message expression

itself if the answer is yes. This means (a) that you should not rely on any side effects

that might occur from building the message string, and (b) that disabled log mes-

sages will not slow your program, even if the parameter to the logging macro would

be time-consuming to evaluate.
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There are several ways to set a node’s logger level.

Setting the logger level from the command line To set a node’s logger level from the

command line, use a command like this:

rosservice call /node-name/set_logger_level ros.package-name level

This command calls a service called set_logger_level, which is provided automatically

by each node. (We’ll study services more carefully in Chapter 8.)

R The node-name is the name of the node whose logger level you would like to set.

R The package-name is, as you might expect, the name of the package that owns the

node.

R The level parameter is a string, chosen from DEBUG, INFO, WARN, ERROR,

and FATAL, naming the logger level to use for that node.

For example, to enable DEBUG-level messages in our example program, we could use

this command:

rosservice call /count_and_log/set_logger_level ros.agitr DEBUG

Note that, because this command communicates directly with the node in question, we

cannot use it until after the node is started. If everything works correctly, this call to rosser-

vice will output nothing but a blank line.

� The set_logger_level service will report an error if you misspell the desired logger

level, but not if you misspell the ros.package-name part.

¹ The ros.package-name argument to rosservice is needed to specify the name of

the logger we would like to configure. Internally, ROS uses a library called log4cxx

to implement its logging features. Everything we’ve discussed in this chapter uses,

behind the scenes, the default logger, whose name is ros.package-name.

However, the ROS C++ client library also uses several other loggers internally, to

track things that are not usually interesting to users, down to the level of things like
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Figure 4.3: The GUI for rqt_logger_level.

bytes being written and read, connections being established and dropped, and call-

backs being invoked. Because the set_logger_level service provides an interface

to all of these loggers, we must explicitly specify which logger we want to configure.

This extra level of complexity is the reason that the rosservice command above

won’t complain if you misspell the logger name. Instead of generating an error,

log4cxx silently (and, one might add, uselessly) creates a new logger with the spec-

ified name.

Setting the logger level from a GUI If you prefer a GUI instead of this command line

interface, try this command:

rqt_logger_level

The resulting window, shown in Figure 4.3, allows you to select from a list of nodes, a list of

loggers—You almost certainly want ros.package-name—and finally a list of logger levels.

Changing the logger level using this tool has the same effect as the rosservice command

mentioned above, because it uses the same service call interface to each node.

Setting the logger level from C++ code It is also possible for a node to modify its own

logger levels. The most direct way to do this is to access the log4cxx infrastructure that

ROS uses to implement its logging features, using code like this:

#include <log4cxx/logger.h>

. . .

log4cxx::Logger::getLogger(ROSCONSOLE_DEFAULT_NAME)->setLevel(

ros::console::g_level_lookup[ros::console::levels::Debug]

);

ros::console::notifyLoggerLevelsChanged();
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Aside from the necessary syntactic camouflage, this code should be readily identifiable as

setting the logger level to DEBUG. The Debug token can, of course, be replaced by Info,

Warn, Error, or Fatal.

¹ The call to ros::console::notifyLoggerLevelsChanged() is necessary because the

enabled/disabled status of each logging statement is cached. It can be omitted if

you set the logger level before any logging statements are executed.

4.6 Looking forward

In this chapter, we saw how to generate log messages from within ROS programs, and how

to view those messages in several different ways. These messages can be useful for tracking

and debugging the behavior of complex ROS systems, especially when those systems span

many different nodes. The next chapter discusses ROS names, which, when used wisely,

can also help us to compose complicated systems of nodes from smaller parts.
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