
csce215 — UNIX/Linux Fundamentals
Spring 2022 — Lecture Notes: Automating Stuff

This document contains slides from the lecture, formatted to be suitable for printing or individual
reading, and with some supplemental explanations added. It is intended as a supplement to,
rather than a replacement for, the lectures themselves — you should not expect the notes to be
self-contained or complete on their own.

(8.1) Last time
Last time, we covered three important but assorted topics:

• Running shell commands in the background using job control.

• Listing and terminating processes.

• Understanding and modifying permissions on files and directories.

Today, we’ll pull together many of the ideas from throughout the semester to see how to
create shell scripts.

• What are shell scripts?

• How can shell scripts be created?

• How can shell scripts be executed?

• Some shell features that are mostly only useful inside scripts.

(8.2) What is a shell script?
A shell script is text file containing shell commands, intended to be executed in order.

Recall from Chapter 1 that all of the commands we’ve been learning in this course are
read and executed by a special program called the shell, specifically the bash shell.

You already know a lot about shell scripting!

• Everything that works at the command line is fair game in a shell script. Commands,
pipes, redirection, etc.

• Everything we’ll see here in Chapters 8 and 9 in the context of scripts would also
work fine on the command line.

1 of 11

(8.3) Why bother with scripting?
Creating scripts can help you save time and avoid mistakes.

• Avoid typing things again and again.

• Get it right once and not worry about the details in the future.

Remember: One of the advantages of a command-based (rather than ‘clicking-based’)
system is that it makes it easier to let the computer handle repetitive things for us.

(8.4) A small example
Here’s a small example that you saw in Lab 7.

execute-me

#!/bin/bash

num_procs ="$(ps -A | wc -l)"
num_users ="$(who | wc -l)"

echo There are currently "$num_procs" processes and "$num_users" users.

To make a file usable as a shell script, we need to do three things:

1. Make it executable.

2. Specify the interpreter.

3. Put it where the shell can find it.

$./execute -me
There are currently 347 processes and 2 users.

(8.5) Reminder: Execute permission
Shell scripts are programs, so they must have execute permission if we want to run them
directly.

$ chmod -v u+x execute -me
mode of 'execute -me' changed from 0644 (rw-r--r--) to 0744 (rwxr --r--)

csce215 Lecture Notes: Automating Stuff 2 of 11

(8.6) Interpreter directives
A script is a program intended to be read and executed by a separate program called an
interpreter.

To execute a script, the system needs to knowwhich interpreter to use. In the Linuxworld,
we do this by including an interpreter directive as the first line of the file:

#!/bin/bash

This line, also called a ‘sharp-bang’ line, has two parts:

1. The exact characters ‘#!’.

2. The full path to the interpreter program. The executable for the interpreter we want
is a file called bash in the directory /bin.

We’ll focus in this course on shell scripts for bash, but interpreter directives can be used
for other interpreters (i.e. other scripting languages) as well.

Here’s an example from Chapter 7, which refers to the Python 3 interpreter:

alive.py

#!/usr/bin/python3

This is an example of a program designed to be
run in the background.

import time
import datetime

while True:
print(f'Still alive at {datetime.datetime.now()}!')
time.sleep (3)

(8.7) Finding executables
To execute programs (including scripts), your shell must be able to find those programs.

There are two options:

csce215 Lecture Notes: Automating Stuff 3 of 11

1. Normally, the shell will look in an environment variable called PATH for a list of
directories to search, separated by colons.

$ echo $PATH
/home/jokane/projects/add -music:/home/jokane/bin/mash:/home/jokane/bin/bang:/hom
e/jokane/bin/off:/home/jokane/bin/install -packages :/home/jokane/bin/photo -tools:
/home/jokane/bin/local -sync:/home/jokane/bin/audit -git:/home/jokane/bin/audit -fi
les:/home/jokane/bin/bib -scripts :/home/jokane/bin/latex -scripts :/home/jokane/bin
:/usr/local/texlive /2021/ bin/i386 -linux:/usr/local/texlive /2021/ bin/x86_64 -linux
:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/lo
cal/games :/snap/bin

Most commands refer to programs found this way.

2. For programs that are not in your PATH, you can tell the shell explicitly where to look
by mentioning a directory.

For example, mention the current directory using a period ‘.’:

$./execute -me
There are currently 347 processes and 2 users.

Or mention a directory using an absolute path starting with ‘/’:

$ /class /215/ recbash

(8.8) Where is this program?
To see the path of the program that the shell would run, use the which command.

which

Look for an executable with the given name.

Example:

$ which ls
/usr/bin/ls

csce215 Lecture Notes: Automating Stuff 4 of 11

$ which python3
/usr/bin/python3

If no program with the given name is found, which produces no output:

$ which xyzzy

Note: A very small number of commands are built-in to the shell, so which cannot find
them, even though they run just fine.

$ which cd

(8.9) Shell variables
A shell variable is a name associated with a value.

To define a shell variable, use an assignment statement:

$ name=Ernie

Note: No spaces around the equals sign.

To access the value of a shell variable, use a $ with the name:

$ echo "$name"
Ernie

$ ls "$name"
ls: cannot access 'Ernie ': No such file or directory

(8.10) Variables and quoting
Remember that we must use quotation marks to tell the shell to treat something with
spaces as a single item.

csce215 Lecture Notes: Automating Stuff 5 of 11

$ name=Bert and Ernie
/bin/bash: line 4: and: command not found
$ name="Bert and Ernie"

$ ls $name
ls: cannot access 'Bert ': No such file or directory
ls: cannot access 'and ': No such file or directory
ls: cannot access 'Ernie ': No such file or directory
$ ls "$name"
ls: cannot access 'Bert and Ernie ': No such file or directory

(8.11) Environment variables
Shell variables are usually only available to the shell in which they are defined.
To make variables available to subprocesses, we must declare them to be environment
variables using the export command.

export

Declare that a variable should be treated as an environment variable, and available to
subprocesses launched by this shell.

print-name

#!/bin/bash

echo "$name"

Here’s an example of an ordinary shell variable compared to an environment variable:

$ echo $name
Bert and Ernie
$./print -name

$ export name
$./print -name
Bert and Ernie

csce215 Lecture Notes: Automating Stuff 6 of 11

(8.12) Command line arguments
Arguments given on the command line are available to our scripts using special variables
$1, $2, ...

Example:

find-by-name

#!/bin/bash
Find files with names that contain the
first argument given on the command line.
find -type f -name "*$1*"

To refer to all of the command line arguments, use "$@".

Here’s an example we used back in Chapter 4. (It also shows integer variables and a
simple loop):

showargs

#!/bin/bash

i=0
for arg in "$@"
do

let i++
echo Arg $i is [$arg]

done

(8.13) An automatic script
Pulling together all of the ideas from today: When you start a new shell, it automatically
executes a file called

~/.bashrc

(Reminder: ‘~’ means ‘home directory’. Starting with a ‘.’ means it’s treated as a hidden
file.)

csce215 Lecture Notes: Automating Stuff 7 of 11

This file is a great place to set environment variables, such as PATH.

You can also change your prompt, set up aliases, etc.
Here’s an example:

.bashrc

Use colors for ls and grep , if they 're
available.
alias ls='ls --color=auto '
alias grep='grep --color=auto '

Set PATH to find my scripts.
export PATH ="~/ bin:$PATH"
export PATH ="~/ bin/audit -git:$PATH"
export PATH ="~/ bin/photo -tools:$PATH"
export PATH ="~/ bin/install -packages:$PATH"
export PATH ="~/ bin/mash:$PATH"
export PATH ="/usr/local/texlive /2021/ bin/x86_64 -linux:$PATH"

Tab -completion and custom prompt for git.
if [-e /etc/bash_completion.d/git -prompt]
then

source /etc/bash_completion
source /etc/bash_completion.d/git -prompt
export PS1='\h:\W$(__git_ps1 " (%s)")\$ '
export GIT_PS1_SHOWSTASHSTATE =1
export GIT_PS1_SHOWUPSTREAM ="auto"
export GIT_PS1_SHOWUNTRACKEDFILES =1
export GIT_PS1_SHOWDIRTYSTATE =1

fi

(8.14) If you make a mistake
If you edit ~/.bashrc and make a mistake setting $PATH, you might have trouble using vim
to re-open the file to fix the mistake.

csce215 Lecture Notes: Automating Stuff 8 of 11

$ vim ~/. bashrc
$ bash
$ echo $PATH
/home/jokane/bin
$ ls
/bin/bash: line 4: ls: command not found
$ vim
/bin/bash: line 5: vim: command not found

If this happens, use the full path to vim instead of relying on $PATH, so you can edit the file
and fix it:

$ /usr/bin/vim ~/. bashrc

csce215 Lecture Notes: Automating Stuff 9 of 11

(8.15) Sample final exam questions

1. A bash shell script should begin with
which two characters?

A. /!

B. #!

C. %%

D. #/

2. Which of the following is a correct
interpreter directive for bash?

A. #!/etc/bash

B. #!/bin/bash

C. #!/bin/sh

D. #!/home/jokane/bin/bash

3. What is the purpose of the special
variables $1, $2, ...?

A. To refer to the previous
commands executed in the
shell

B. To refer to arguments given
on the command line to a
script

C. To refer to the parent
directories of the current
directory

D. To refer to the other users
logged in to the system

4. Which of these commands prints the
value of the variable QUUX?

A. show QUUX

B. echo $QUUX

C. echo QUUX

D. cat $QUUX

5. Which of the following steps is not
necessary to make a file containing
commands usable as a bash shell script?

A. Compiling the file into an
executable using a bash
compiler.

B. Putting the file in a place
where the shell can find it.

C. Making the file executable.
D. Specifying the interpreter

using an interpreter
directive.

6. Which of these commands assigns a value
to the shell variable FOO?

A. FOO=bar

B. bar -> foo

C. bar->foo

D. foo =bar

7. Which environment variable contains a
list of directories that should be searched for
programs to execute?

A. SHELL

B. SEARCH

C. PWD

D. PATH

8. Which of the following commands
declares that the variable QUUZ should be
available to subprocesses launched by this
shell?

A. subproc QUUZ

B. global QUUZ

C. export QUUZ

D. shipout QUUZ

csce215 Lecture Notes: Automating Stuff 10 of 11

9. Which of the following shell features can
be used in a shell script?

A. pipes
B. output redirection
C. input redirection
D. all of the above

10. The PATH variable is a list of directories,
separated by .

A. periods (.)
B. commas (,)
C. colons (:)
D. semicolons (;)

11. Which of these commands will look for
an executable with the given name?

A. where

B. which

C. what

D. why

csce215 Lecture Notes: Automating Stuff 11 of 11

	Last time
	What is a shell script?
	Why bother with scripting?
	A small example
	Reminder: Execute permission
	Interpreter directives
	Finding executables
	Where is this program?
	Shell variables
	Variables and quoting
	Environment variables
	Command line arguments
	An automatic script
	If you make a mistake
	Sample final exam questions

