
csce215 — UNIX/Linux Fundamentals
Spring 2022 — Lecture Notes: Automating More Stuff

This document contains slides from the lecture, formatted to be suitable for printing or individual
reading, and with some supplemental explanations added. It is intended as a supplement to,
rather than a replacement for, the lectures themselves — you should not expect the notes to be
self-contained or complete on their own.

(9.1) Last time
Last time, we pulled together many of the ideas from throughout the semester to see how
to create shell scripts.

• What are shell scripts?

• How can shell scripts be created?

• How can shell scripts be executed?

• Shell variables and environment variables

Today, we’ll wrap things up with a few final shell features that are particularly useful for
shell scripts.

• Shell options.

• Conditionals.

• Loops.

(9.2) Final exam
As a reminder, the final exam, covering concepts marked with , will be in person in
Amoco Hall on April 30 at 4:00pm.

Sample questions are in the lecture notes.

1 of 12

(9.3) Shell options
There are several shell options that change the behavior of the shell for the rest of the
session.

set

Enable shell options.

-e stop the script when an error occurs

-v print each command as given

-x print each command after expansion

Example: Using -v and -x to see what is being executed.

csce215 Lecture Notes: Automating More Stuff 2 of 12

$ cat $(which cvlc)
#! /bin/sh
exec /usr/bin/vlc -I "dummy" "$@"
$ set -v
$ cat $(which cvlc)
cat $(which cvlc)
#! /bin/sh
exec /usr/bin/vlc -I "dummy" "$@"
$ set -x
set -x
$ cat $(which cvlc)
cat $(which cvlc)
++ which cvlc
+ cat /usr/bin/cvlc
#! /bin/sh
exec /usr/bin/vlc -I "dummy" "$@"

(9.4) Conditionals
We can execute code conditionally.

if ... then ... fi
Execute commands if a condition is met.

The simplest form of if statement uses a normal command as the test, and check its return
code.

• Recall the details about return codes from Chapter 4.

• In general: Running without an error is considered ‘true’.

In a directory with these files:

csce215 Lecture Notes: Automating More Stuff 3 of 12

$ ls
a.txt
b.txt
cond1
cond2
cond3
cond4
cond5
cond6
loop1
loop2
loop3

True / success / zero return code:

cond1

#!/bin/bash

if ls
then

echo Yes
else

echo No
fi

$./ cond1
a.txt
b.txt
cond1
cond2
cond3
cond4
cond5
cond6
loop1
loop2
loop3
Yes

csce215 Lecture Notes: Automating More Stuff 4 of 12

False / failure / non-zero return code:

cond2

#!/bin/bash

if ls *.py
then

echo Yes
else

echo No
fi

$./ cond2
ls: cannot access '*.py ': No such file or directory
No

(9.5) Primary expressions
Instead of a command, we can use a primary expression, marked with square brackets []
and spaces, as the condition of an if statement.

• File exists? -a

cond3

#!/bin/bash

file="$1"

if [-a "$file"]
then

echo $file exists
else

echo $file does not exist
fi

$./ cond3 a.txt
a.txt exists

csce215 Lecture Notes: Automating More Stuff 5 of 12

$./ cond3 c.txt
c.txt does not exist

• One file is newer than another? -nt

cond4

#!/bin/bash

file1 ="$1"
file2 ="$2"

if ["$file1" -nt "$file2"]
then

echo $file1 is newer
else

echo $file2 is newer
fi

$./ cond4 a.txt b.txt
b.txt is newer

• Strings are equal? ==

cond5

#!/bin/bash

opt="$1"

if ["$opt" == "-v"]
then

echo Got -v
else

echo Nope
fi

csce215 Lecture Notes: Automating More Stuff 6 of 12

$./ cond5
Nope

$./ cond5 -v
Got -v

• String has zero length? -z

cond6

#!/bin/bash

if [-z "$1"]
then

echo Argument is missing.
exit

fi

echo Ready!

$./ cond6 a.txt
Ready!

$./ cond6
Argument is missing.

There are many other primary expressions, including boolean operators (and, or, not) for
combining expressions.1

(9.6) Loops
We can use for loops to repeat things.

1https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html

csce215 Lecture Notes: Automating More Stuff 7 of 12

https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html

for ... in ... do ... done

Repeat commands for each element in a list

A for command needs:

• A variable

• A list of values that variable should take

• A commands to execute for each value

Example:

loop1

#!/bin/bash

for i in a b c
do

echo $i
done

$./ loop1
a
b
c

How to generate the list of values to iterate over? You already know at least three ways!

• List values explicitly.

(See loop1 example above.)

• Use wildcards.

csce215 Lecture Notes: Automating More Stuff 8 of 12

loop2

#!/bin/bash

for i in *.txt
do

echo File $i has $(cat $i | wc -l) lines.
done

$./ loop2
File a.txt has 1 lines.
File b.txt has 2 lines.

• Use command substitution.

loop3

#!/bin/bash

for pid in $(ps -o pid=)
do

cat /proc/$pid/status | grep -E 'Name|State '
echo

done

csce215 Lecture Notes: Automating More Stuff 9 of 12

$./ loop3
Name: bash
State: S (sleeping)

Name: evince
State: S (sleeping)

Name: evince
State: S (sleeping)

Name: python3
State: S (sleeping)

Name: bash
State: S (sleeping)

Name: bash
State: S (sleeping)

Name: loop3
State: S (sleeping)

cat: /proc /1785832/ status: No such file or directory

(9.7) When to make a shell script?
Shell scripts can be very helpful to save time and avoid repeating mistakes.

• There are enough features in bash to think of it like a programming language. Some
we’ve seen (variables, conditionals, loops) and others we’ve left for you to explore
on your own (functions, arrays, arithmetic, etc).

• There’s no limit to the complexity of problems that shell scripts can solve.

But...

• The syntax can be painful.

• Data structures are limited.

• Debugging can be tricky.

My conclusion: When your script gets more complex than a handful of conditionals or a
loop or two, it’s time to ‘upgrade’ to a more complete language like Python or Perl.

csce215 Lecture Notes: Automating More Stuff 10 of 12

(9.8) Sample final exam questions

1. The purpose of the -x shell option,
enabled with set -x, is to .

A. print each command as
given

B. stop the script when an
error occurs

C. print each command after
expansion

D. prevent overwriting of files
by redirection

2. The conditional

if ["$a" == b]; then

tests whether .

A. Two processes are running
the same program.

B. Two files have the same
modification date.

C. Two files have the same
contents.

D. Two strings are equal.

3. The conditional

if [-a "$file"]; then

tests whether .

A. A file is a hidden file.
B. A file has been accessed.
C. A file is readable by all

users.
D. A file exists.

4. The conditional

if ["$file1" -nt "$file2"]; then

tests whether .

A. One file is neater than
another.

B. One file depends on
another.

C. One file is newer than
another.

D. One file is larger than
another.

5. The purpose of the -v shell option,
enabled with set -v, is to .

A. print each command after
expansion

B. stop the script when an
error occurs

C. print each command as
given

D. prevent overwriting of files
by redirection

6. The purpose of the -e shell option,
enabled with set -e, is to .

A. print each command after
expansion

B. print each command as
given

C. prevent overwriting of files
by redirection

D. stop the script when an
error occurs

csce215 Lecture Notes: Automating More Stuff 11 of 12

7. In a directory containing the files
a.txt, b.txt, c.java, and d.cpp, how many
iterations will the loop

for f in *.txt; do

execute?

A. 4
B. 2
C. 3
D. 1

8. In a directory containing the files
a.txt, b.txt, c.java, and d.cpp, how many
iterations will the loop

for f in $(find -name *java); do

execute?

A. 1
B. 2
C. 4
D. 3

9. The purpose of the set command is to
.

A. enable shell options
B. assign values to shell

variables
C. assign values to

environment variables
D. set permissions on files

10. The conditional

if command; then

tests whether .

A. The command runs
successfully, with a zero
return code.

B. The command is the name
of the currently-running
script.

C. The command is running in
the background.

D. The command exists.

11. The conditional

if [-z "$a"]; then

tests whether .

A. A jobs list is empty.
B. A file is empty.
C. A string is empty.
D. A process list is empty.

csce215 Lecture Notes: Automating More Stuff 12 of 12

	Last time
	Final exam
	Shell options
	Conditionals
	Primary expressions
	Loops
	When to make a shell script?
	Sample final exam questions

