
csce215 — UNIX/Linux Fundamentals
Spring 2022 — Lecture Notes: Time to make the donuts

This document contains slides from the lecture, formatted to be suitable for printing or individual
reading, and with some supplemental explanations added. It is intended as a supplement to,
rather than a replacement for, the lectures themselves — you should not expect the notes to be
self-contained or complete on their own.

(5.1) Last time
Last time we learned about:

• How the shell passes arguments to the programs we run.

• How certain special characters such as wildcards * ? and quotation marks " affect
those arguments.

• How multiple commands can be sequenced with && and ||.

• How command substitution $() allows the output of one command to form the
arguments of another command.

Today, we will learn about an important tool called make that automates the process of
finding and executing commands that need to be run to keep things up-to-date.

(5.2) Commands that create files
A common pattern is for a shell command to process/execute/compile a file to produce
another file.

Example (from Assignment 4):

g++ pairs.cpp -o pairs

pairs.cpp g++ pairs

Key idea: One file depends on another file.

1 of 10

• When pairs.cpp is changed,

• run the command g++ pairs.cpp -o pairs,

• to update pairs.

(5.3) It can get complicated!
Here’s a small slice of the dependencies from one of my C++ programs.

shellg++

circle.cpp

g++

circle.o

segment.cpp g++

segment.o

point.cpp

g++ point.o

genpoly.cpp

g++

genpoly.o

polygon.cpp
g++ polygon.o

circle.h

genpoly.h

segment.h

util.h

point.h

triangle.h

polygon.h

(5.4) make

make
Execute commands to create or update files, based on the rules in a makefile.

csce215 Lecture Notes: Time to make the donuts 2 of 10

To use make, tell it what you want.

$ make pairs
g++ pairs.cpp -o pairs

This will print and execute commands to create or update the goal we specify.

If the goal is omitted (i.e. make by itself), the first target will be used.

(5.5) Makefiles
A makefile describes the dependencies between a collection of files.

It’s a collection of rules like this:

• When is changed, prerequisites

• run the command(s) , recipe

• to update . target

The format looks like this:

target: prerequisites
recipe

Important (and easy tomess up): Thewhitespace before the recipemust be a tab character,
not spaces. If you see an error about a ‘missing separator’, this is probably the problem.

(5.6) Making a makefile in vim

To type a tab character in vim in insert mode, you may need to press Ctrl-V, which means
‘take the next character literally’, before pressing Tab.

To checkwhether youhave inserted Tab characters correctly, use :set hlsearch to enable
highlighting of text that matches the most recent search, and then use / to search for a
space.

csce215 Lecture Notes: Time to make the donuts 3 of 10

(5.7) A tiny example
In the example from before, we would make a file called Makefile (capital M) that looks
like this:

pairs: pairs.cpp
g++ pairs.cpp -o pairs

Then we can build pairs like this:

$ make pairs
g++ pairs.cpp -o pairs

If we make again, without changing pairs.cpp:

$ make pairs
make: 'pairs ' is up to date.

(5.8) Why bother?
Using a make instead of typing the commands directly has two big advantages.

Repeatability: You don’t need to remember or re-type the commands each time. If you
include the makefile with your source code, other developers will be able to build your
project.

Efficiency: Only execute the steps that are necessary to update the target. This is mostly
irrelevant for small projects, but can make a huge difference very quickly.

(Also: Most of you are likely to use make extensively in CSCE 240.)

(5.9) Modification times
Linux keeps track of the modification time for each file, which we can see using ls -l:

$ ls -l
total 44
-rw-rw-r-- 1 jokane jokane 42 Oct 1 09:00 Makefile
-rwxrwxr -x 1 jokane jokane 32840 Oct 1 09:05 pairs
-rw-r----- 1 jokane jokane 1010 Oct 1 09:00 pairs.cpp

csce215 Lecture Notes: Time to make the donuts 4 of 10

When a file is edited, its modification time is changed to the current time.

(5.10) Changing modification times
We can also use touch to change the modification time of a file directly.

touch

Change a file’s modification time to the current time.

This can be useful for testing makefiles, to ‘simulate’ a change to a prerequisite.

$ ls -l
total 44
-rw-rw-r-- 1 jokane jokane 42 Oct 1 09:00 Makefile
-rwxrwxr -x 1 jokane jokane 32840 Oct 1 09:05 pairs
-rw-r----- 1 jokane jokane 1010 Oct 1 09:00 pairs.cpp
$ touch pairs.cpp
$ ls -l
total 44
-rw-rw-r-- 1 jokane jokane 42 Oct 1 09:00 Makefile
-rwxrwxr -x 1 jokane jokane 32840 Oct 1 09:05 pairs
-rw-r----- 1 jokane jokane 1010 Oct 1 09:07 pairs.cpp

(5.11) What make does
The goal of make is to determine whether or not the commands in a recipe need to be
executed.

The recipe commands will be executed if either:

• the target file does not exist, or

• any of the prerequisites are newer than the target.

csce215 Lecture Notes: Time to make the donuts 5 of 10

$ make pairs
g++ pairs.cpp -o pairs
$ make pairs
make: 'pairs ' is up to date.
$ touch pairs.cpp
$ make pairs
g++ pairs.cpp -o pairs

$ make pairs
make: 'pairs ' is up to date.
$ touch pairs
$ make pairs
make: 'pairs ' is up to date.

(5.12) Multiple steps
The real power of make comes when prerequisites have rules of their own.

report.pdf: report.tex piechart.pdf
pdflatex report | grep Output

piechart.pdf: piechart.py
python3 piechart.py

clean:
rm -f -v *.pdf *.aux *.log

$ make report.pdf
python3 piechart.py
Running piechart.py to create piechart.pdf.
pdflatex report | grep Output
Output written on report.pdf (1 page , 61453 bytes).

$ touch report.tex
$ make report.pdf
pdflatex report | grep Output
Output written on report.pdf (1 page , 51775 bytes).

csce215 Lecture Notes: Time to make the donuts 6 of 10

$ touch piechart.py
$ make report.pdf
python3 piechart.py
Running piechart.py to create piechart.pdf.
pdflatex report | grep Output
Output written on report.pdf (1 page , 51776 bytes).

(5.13) Makefile variables
We can define variables in our makefiles to avoid repeating ourselves.

• Define with =.

• Use with $.

Example:

CC = g++
CFLAGS = -I/usr/include/qt -c -Wall -g -finline -functions -O
LFLAGS = -lqt -o a.out
TARGET = lma

$(TARGET): filters.o image.o lma.o template.o vertex.o
$(CC) filters.o image.o lma.o template.o vertex.o $(LFLAGS) -o $(TARGET)

filters.o: filters.cpp image.h filters.h vertex.h image.h image.h vertex.h
$(CC) $(CFLAGS) -c filters.cpp

image.o: image.cpp image.h
$(CC) $(CFLAGS) -c image.cpp

lma.o: lma.cpp lma.h image.h image.h filters.h vertex.h
$(CC) $(CFLAGS) -c lma.cpp

template.o: template.cpp
$(CC) $(CFLAGS) -c template.cpp

vertex.o: vertex.cpp vertex.h image.h filters.h
$(CC) $(CFLAGS) -c vertex.cpp

(5.14) Automatic variables
Make recognizes a few automatic variables that get values automatically within each
recipe.

• Name of the target: $@

csce215 Lecture Notes: Time to make the donuts 7 of 10

• All prerequisites: $^

• All prerequisites newer than the target: $?

• The first prerequisite: $<

vertex.o: vertex.cpp vertex.h image.h filters.h
$(CC) $(CFLAGS) -c $< -o $@

(5.15) Fake targets
Sometimes it helps to create ‘fake’ targets that are not really files.

clean:
rm -f -v *.pdf *.log *.aux

$ make clean
rm -f -v *.pdf *.aux *.log
removed 'piechart.pdf '
removed 'report.pdf '
removed 'report.aux '
removed 'report.log '

csce215 Lecture Notes: Time to make the donuts 8 of 10

(5.16) Sample final exam questions

1. A makefile describes the between
a collection of files.

A. goals
B. order
C. dependencies
D. rules

2. When running make, the command line
arguments should be .

A. Files that have changed
since the last time makewas
run.

B. A list of commands that
make should execute.

C. Files that should be
updated (i.e. what you
want).

D. Actually, make does not
accept command line
arguments.

3. The purpose of the make command is
to .

A. search for and acts on files
in or below a directory

B. execute commands to
create or update files,
based on the rules in a
makefile

C. create a new file in the
current directory

D. find lines that match a
pattern

4. Recall this explanation for themeaning of
a makefile rule:

When is changed, run the command
to update .

The first blank in this explanation should be:

A. prerequisite
B. recipe
C. target
D. None of the above

5. Here is an example makefile rule.

aaa.txt: bbb.txt
ccc bbb.txt > aaa.txt

In this example, the filename aaa.txt on the
first line is the rule’s .

A. recipe
B. prerequisite
C. target
D. None of the above

6. Recall this explanation for themeaning of
a makefile rule:

When is changed, run the command
to update .

The second blank in this explanation should
be:

A. target
B. prerequisite
C. recipe
D. None of the above

csce215 Lecture Notes: Time to make the donuts 9 of 10

7. Recall this explanation for themeaning of
a makefile rule:

When is changed, run the command
to update .

The third blank in this explanation should
be:

A. recipe
B. prerequisite
C. target
D. None of the above

8. Here is an example makefile rule.

aaa.txt: bbb.txt
ccc bbb.txt > aaa.txt

In this example, when does make execute the
command on the second line?

A. when bbb.txt is older than
aaa.txt

B. when bbb.txt is newer
than aaa.txt

C. when ccc cannot be found
D. when bbb.txt does not

exist

9. The purpose of the touch command is
to .

A. Change a file’s owner to be
the current user.

B. Show a file’s access history.
C. Change a file’s

modification time to
the current time.

D. Show a file’s permissions.
10. Here is an example makefile rule.

aaa.txt: bbb.txt
ccc bbb.txt > aaa.txt

In this example, the command ccc bbb.txt
> aaa.txt is the rule’s .

A. recipe
B. target
C. prerequisite
D. None of the above

11. Here is an example makefile rule.

aaa.txt: bbb.txt
ccc bbb.txt > aaa.txt

In this example, the filename bbb.txt on the
first line is the rule’s .

A. target
B. prerequisite
C. recipe
D. None of the above

csce215 Lecture Notes: Time to make the donuts 10 of 10

	Last time
	Commands that create files
	It can get complicated!
	make
	Makefiles
	Making a makefile in `=̃12 `#=12 `_=12 `=12 `&=12 `$=12 `=̂12 vim
	A tiny example
	Why bother?
	Modification times
	Changing modification times
	What `=̃12 `#=12 `_=12 `=12 `&=12 `$=12 `=̂12 make does
	Multiple steps
	Makefile variables
	Automatic variables
	Fake targets
	Sample final exam questions

