
csce215 — UNIX/Linux Fundamentals
Spring 2022 — Lecture Notes: How to be lazy

This document contains slides from the lecture, formatted to be suitable for printing or individual
reading, and with some supplemental explanations added. It is intended as a supplement to,
rather than a replacement for, the lectures themselves — you should not expect the notes to be
self-contained or complete on their own.

(4.1) Last time
Last timewe learned about standard input, standard output, and standard error and how
to redirect and pipe them.

• output redirection with > and >>

• input redirection with <

• error redirection with 2> and 2>>

• pipes with |

Today, we will learn some ways to use the shell more efficiently, i.e. ways to be lazy. The
key ideas will be:

• Command line arguments and special characters that influence them;

• Lists that connect multiple commands to be run independently; and

• Command substitutions that use the output of one command as arguments for
another.

(4.2) Command line arguments
Remember thatwhenyou type commands, you are communicatingwith a special program
called a shell, whose job is to read, interpret, and execute the commands you give, usually
by running other programs.

The shell passes command line arguments to the programs it runs.

1 of 11

$ ls -l shakespeare.txt
-rw-rw-r-- 1 jokane jokane 75223 Jun 9 09:59 shakespeare.txt

Command: ls

Arguments:

• -l

• shakespeare.txt

(4.3) Using the arguments
The arguments are available to the program being run, in a form that depends on the
programming language.

For example, in Java, we can do something like this:

class ShowArgs {
public static int main(String [] args) {

String s;
for (int i = 0; i < args.length; i++) {

s = String.format ("Arg %d is [%s]", i, args[i]);
System.out.println(s);

}
return 0;

}
}

Someof the examples belowuse a similar program,written as a shell script, called showargs.

(4.4) Special characters
Usually, the shell gets arguments by splitting the command up at spaces.

Howevermost forms of punctuation are treated as special characters that can change this
behavior.

We’ve seen a few special characters already:

csce215 Lecture Notes: How to be lazy 2 of 11

> < | ~

There are a few others that are important to know.

(4.5) Wildcards
Arguments that contain * or ? are replaced with a list of filenames that match.

• A ? matches any single character.

• A * matches any sequence of characters.

The characters * and ? are called wildcards.

Examples in a directory filled with C++ (cpp), header (h), and object (o) files:

$ ls task.*
task.cpp
task.h
task.o

$ ls task.?
task.h
task.o

$ ls *.cpp | head
angle.cpp
animate -callback.cpp
animate.cpp
animate -gl.cpp
apollonius.cpp
circle.cpp
config.cpp
diffdrive.cpp
drawercolor.cpp
drawer.cpp

csce215 Lecture Notes: How to be lazy 3 of 11

(4.6) Wildcard example
Suppose we wanted a list of all files in the current directory that start with ‘a‘ and have a
cpp extension.

We can use this wildcard pattern: a*.cpp

a * .cpp←
m
atch

the
lettera

←
m
atch

anything
←

m
atch

the
characters

.,c,p,and
p

$ ls a*.cpp
angle.cpp
animate -callback.cpp
animate.cpp
animate -gl.cpp
apollonius.cpp

(4.7) Braces
Arguments containing curly braces are replaced with a list of each of the things between
braces.

$ showargs X{a,b,c}Y
Arg 1 is [XaY]
Arg 2 is [XbY]
Arg 3 is [XcY]

csce215 Lecture Notes: How to be lazy 4 of 11

$ showargs X{a,b{1,2},c}Y
Arg 1 is [XaY]
Arg 2 is [Xb1Y]
Arg 3 is [Xb2Y]
Arg 4 is [XcY]

$ ls util.{cpp ,h}
util.cpp
util.h

$ ls *.{cpp ,h} | tail
triangle.cpp
triangle.h
unionfind.cpp
unionfind.h
uniseq.cpp
uniseq.h
util.cpp
util.h
wanderingrobots.cpp
wanderingrobots.h

(4.8) Tilde for home directory
The tilde character (~) is replaced with the path to the user’s home directory.

$ showargs ~
Arg 1 is [/home/jokane]

(4.9) Quotation marks
Double quotation marks (") prevent the shell from:

• splitting into separate arguments

• expanding wildcards

csce215 Lecture Notes: How to be lazy 5 of 11

$ showargs a b c d e f
Arg 1 is [a]
Arg 2 is [b]
Arg 3 is [c]
Arg 4 is [d]
Arg 5 is [e]
Arg 6 is [f]

$ showargs a b c "d e f"
Arg 1 is [a]
Arg 2 is [b]
Arg 3 is [c]
Arg 4 is [d e f]

$ showargs "*. cpp"
Arg 1 is [*.cpp]

$ showargs *.cpp | head -n 5
Arg 1 is [angle.cpp]
Arg 2 is [animate -callback.cpp]
Arg 3 is [animate.cpp]
Arg 4 is [animate -gl.cpp]
Arg 5 is [apollonius.cpp]

(4.10) Backslash
Use a backslash (\) to force the next character to be treated normally. This is called
‘escaping’ the character.

$ showargs a b c d e f
Arg 1 is [a]
Arg 2 is [b]
Arg 3 is [c]
Arg 4 is [d]
Arg 5 is [e]
Arg 6 is [f]

csce215 Lecture Notes: How to be lazy 6 of 11

$ showargs a\ b\ c\ d\ e\ f
Arg 1 is [a b c d e f]

$ showargs *\?\ \\
Arg 1 is [*? \]

With escaping:

$ echo hello world > hello\ world.txt
$ ls
hello world.txt
$ cat "hello world.txt"
hello world

Without escaping:

$ echo hello world > hello world.txt
$ ls
hello
$ cat hello
hello world world.txt

(4.11) Connecting commands
Use ; to separate two commands, when each one should be executed.

$ date; whoami
Fri Jun 9 09:59:05 AM CDT 2023
jokane

Use && to separate two commands, when the second should be ignored if the first fails.

$ ls main.cpp && echo Success
main.cpp
Success
$ ls fake.cpp && echo Success
ls: cannot access 'fake.cpp ': No such file or directory

csce215 Lecture Notes: How to be lazy 7 of 11

Use || to separate two commands, when the second should be executed if the first fails.

$ ls main.cpp || echo Fail
main.cpp
$ ls fake.cpp || echo Fail
ls: cannot access 'fake.cpp ': No such file or directory
Fail

(4.12) Compile and run
A useful pattern is:

compile command && run command

$ javac Hello.java && java Hello
hello , world

$ javac "Hello (Broken).java" && java Hello
Hello (Broken).java :2: error: ']' expected

public static String mian(String[args) {
^

Hello (Broken).java :3: error: ';' expected
System.out.println ("hello , world")

^
Hello (Broken).java :4: error: reached end of file while parsing
}
^

3 errors

(4.13) Command substitution
Use $() to insert the output of one command into the arguments for another command.
(This can also bewrittenwith backticks (`). These are the backwards quotes that, onmost
keyboards, come from the shift-tilde key).

Example: Making a copy of a program.

csce215 Lecture Notes: How to be lazy 8 of 11

$ which zoom
/usr/bin/zoom
$ cp -v /usr/bin/zoom .
'/usr/bin/zoom ' -> './zoom '
$ cp -v $(which zoom) .
'/usr/bin/zoom ' -> './zoom '

Example: Looking for a file by name.

$ locate pyx | grep version.py
/usr/local/lib/python3 .10/dist -packages/pandas/_libs/tslibs/conversion.pyx
/usr/local/lib/python3 .10/dist -packages/pandas/_libs/tslibs/tzconversion.pyx
$ cat $(locate pyx | grep version.py) | tail -n 2

return fold

(4.14) Other special characters
There are a few other characters that bash treats in special ways:

1. parentheses ()

2. square brackets []

3. comment #

4. variable $

5. run in background &

6. negation !

7. . . .

We’ll cover some of these later, but themain thing to remember is that nearly all punctuation
has a special meaning, so you’ll sometimes need to be careful. When in doubt, escape it.

csce215 Lecture Notes: How to be lazy 9 of 11

(4.15) Sample final exam questions

1. Which of these commands will use
command substitution to copy the
executable for the program grep to the
current directory?

A. cp ?(grep) .

B. cp (which grep) .

C. cp $(grep) .

D. cp $(which grep) .

2. In a directory containing many kinds of
files, which of these commands will display
at most 10 files with the extension cpp?

A. ls ?.cpp | head

B. ls .cpp | head

C. ls *.cpp | head

D. ls *.cpp | tac

3. Which of these fileswould be listed by the
command ls a b c d e f ?

A. Six files named a, b, c, d, e,
and f.

B. A single file named ’a b c
d e f g’, with 5 spaces in
its name.

C. Two files, one named ’a b
c’ and one named ’d e f’,
each with two spaces in its
name.

D. None of the above.
4. Which symbol is used to force the next
character to be treated normally?

A. `

B. ?

C. \

D. /

5. For the command ls hi.? which files
would be listed?

A. hi.java

B. hi.py

C. hi.

D. hi.c

6. Which of these commands will list all of
the files whose name contains an opening
parenthesis?

A. ls *(*

B. ls *\(*

C. ls *\(*

D. ls \(

7. Which of these fileswould be listed by the
command ls hello.* ?

A. hello.py

B. hello.csharp

C. hello.cpp

D. All of the above.

8. What would the effect of the command ls
*.c be?

A. To list all files whose
names consist of exactly
one character, followed by
a period, followed by a c.

B. To list all files with a c
extension.

C. To list all files whose names
do not contain a c.

D. To list all files whose names
contain a c.

csce215 Lecture Notes: How to be lazy 10 of 11

9. Which of these fileswould be listed by the
command ls a\ b\ c\ d\ e\ f, which has
a space after each of its backslashes?

A. Six files named a, b, c, d, e,
and f.

B. A single file named ’a b c
d e f’, with 5 spaces in its
name.

C. Two files, one named ’a b
c’ and one named ’d e f’,
each with two spaces in its
name.

D. None of the above.

10. What would the effect of the command
ls r* be?

A. To list all files, including
those whose names start
with r.

B. To list all files whose name
are exactly zero or more r
characters.

C. To list all files whose names
start with r.

D. To list all files whose names
start with r and have
exactly two characters.

11. Which command below will list all of
the files with extensions that contain exactly
three characters?

A. ls *.???

B. ls .???

C. ls *....

D. ls *.*

csce215 Lecture Notes: How to be lazy 11 of 11

	Last time
	Command line arguments
	Using the arguments
	Special characters
	Wildcards
	Wildcard example
	Braces
	Tilde for home directory
	Quotation marks
	Backslash
	Connecting commands
	Compile and run
	Command substitution
	Other special characters
	Sample final exam questions

