
csce215 — UNIX/Linux Fundamentals
Spring 2022 — Assignment 9

This assignment is intended to provide some practice and additional content for the
material covered in lecture on Monday, April 18. You’ll practice creating a somewhat
more complex shell script, including loops and conditionals. The assignment is meant
to be started in the lab sessions on Wednesday, April 20 and Thursday, April 21. It
must be submitted by 11:59pm on Sunday, April 24. A total of 92 points are available.

1 Get started
One last time, you should create and navigate to a directory for this lab, begin an recbash
recording, create a directory for this assignment, make that your current directory, and
then copy over some provided files:

cp -rv /class /215/ assignment9 /* .

And, as always, if you are working in the lab during the scheduled time, use the QR code
to mark yourself present.

Record your attendance using the QR code. Record your
terminal session using recbash. In a directory called
assignment9, copy the provided files as shown above.

2 Your mission, should you choose to accept it
You should see a single subdirectory in assignment9, called otto. Navigate to that direc-
tory and have a look.

In some contexts—including projects for a number of CSCE courses that youmay perhaps
take in the future— you’ll be asked to write a program that reads input from standard in-
put in a certain format, performs some computations on that input, and generates standard
output in a certain format to show the results. In cases like that, it’s common to be given

1 of 9

examples of correctly-formatted input files, along with other files that contain the correct
output for each sample input. If a program produces the exactly correct output for each
of the sample inputs, then you have some good evidence that the program is right.

However, it can be extremely tedious to re-enter those inputs and compare the outputs
manually, so this is a perfect opportunity to put the philosophy of this course (i.e. ‘Make
the computer work for us, instead of the other way around’) to work. Your goal in this
lab is to create a shell script that automates the process of testing whether a program
produces the correct output for each of the given sample inputs.

In this lab, we’ll work with a real example of this type: a project that was assigned for
CSCE 350, a junior-level course about algorithms and data structures, in the recent past.
You won’t need to complete or even understand that project today; instead, you’ll use
your skills from CSCE 215 to create a shell script called check that uses the sample inputs
and outputs to help determinewhether a programwritten for that project is correct or not.

To give you a sense of what you’re aiming for, here are some examples of how the com-
pleted script should work.

$./ check prog1.cpp
Found source file prog1.cpp.
Program prog1 is up-to-date. No need to recompile.
1.in: Correct output
2.in: Incorrect output
3.in: Incorrect output
4.in: Incorrect output

$./ check prog2.cpp
Found source file prog2.cpp.
Recompiling prog2.cpp.
1.in: Correct output
2.in: Correct output
3.in: Correct output
4.in: Correct output

$./ check
No program name given on command line.

$./ check nonexistent.cpp
Source file nonexistent.cpp does not exist.

csce215 Assignment 9 2 of 9

Before getting started, you should take a look at the provided files. Here’s a description
of each one.

• The project description, project4.pdf. This is the assignment that describes the
input and output formats. You can ignore this file if you like, but you might be
curious to understand what the programs given here are trying to do.

• Four sample input files, called 1.in, 2.in, 3.in, and 4.in. These are inputs, in the
format described in the project description, that we can use to test programs written
to complete the project.

• Four sample output files, called 1.out, 2.out, 3.out, and 4.out. Each one of these
goes with one of the sample input files. For example, 1.out goes with 1.in; when a
correct program gets the contents of 1.in as its standard input, it will produce the
contents of 1.out as its standard output. Likewise for the other three samples.

• Two example programs, written in C++, that are attempts to complete this project,
called prog1.cpp and prog2.cpp. Think of these as examples of the program you
mightwrite to complete the assignment given in project4.pdf. In this case, prog1.cpp
has a subtle bug and prog2.cpp is a correct solution — notice in the examples above
that prog1.cpp produces incorrect outputs for several of the sample inputs. These
C++ programs are provided to you, and you don’t need to modify them; you don’t
need to know anything about C++ for this lab.

So your mission is this: Create the shell script called check that uses these files to test the
given programs, as shown in the examples above. The next section will walk you through
the steps of creating this script.

3 Building the script
Let’s work through the process of creating the check script one step at a time.

1. First, we need to create the script itself. Use vim to create a file called check and add
an appropriate interpreter directive for a bash shell script at the top. Enable execute
permission on this file. Test to ensure that it can be executedwith the command

./check

Since you have (so far), no commands in the script, running it should do nothing,
but it should execute without any error messages.

csce215 Assignment 9 3 of 9

2. Now let’s start adding features to the script. Edit check, adding an assignment state-
ment that creates a shell variable called cppwith the same value as thefirst command
line argument to the script. Make sure your assignment works correctly even when
this first argument contains spaces. (We learned how to do this in Chapter 8.) Run
the script to ensure that it’s working as expected.

3. Add a conditional that checks whether cpp is an empty string, which should happen
if we run checkwithout any command line arguments. Your conditional should use
a -z primary expression. If the variable cpp is indeed empty, print the exact error
message

No program name given on command line.

and exit. Save the script, and then run it to ensure that it’s working as expected.

4. Add a conditional that checkswhether the file named by cpp exists. Your conditional
should use a -a primary expression. If the file doesn’t exist, print the exact error
message

Source file $cpp does not exist.

and exit. If the file does exist, print the status update

Found source file $cpp.

Save the script, and then run it to ensure that it’s working as expected.

5. Add an assignment statement that creates a shell variable called exe that holds the
name of the executable that we’ll create by compiling the given C++ source file.
One customary way of naming this sort of executable file is the same as the name of
the source code file, but without the .cpp extension. Here’s one way to assign the
variable exe to that shortened file name:

exe="${cpp%.cpp}"

This assignment statement, which you should use in your script exactly as shown,
uses one of the many additional shell features that we didn’t have time for this
semester, called parameter substitution. The basic idea is something like ‘Get the value
of the shell variable cpp, but remove .cpp from it.’ So if cpp has the value prog1.cpp,
this will assign exe to contain just prog1. There are a number of other forms of pa-
rameter substitution that youmaybe curious to learn about aswell. After adding this
assignment, save the script and then run it to ensure that it’s working as expected.

csce215 Assignment 9 4 of 9

6. Nowwe have variables cpp and exe that hold the names of the program source code
and the executable that would be created from that source code, respectively. We
need to add code that compiles the source code, but only if its modification date is
more recent than the modification date of the executable file, or if the executable file
does yet not exist. This is exactly what the -nt primary expression is for.
So add a conditional that checks whether the file named by $cpp is newer than the
file named by $exe. If so, print the message

Recompiling $cpp.

and run the command

g++ "$cpp" -o "$exe"

to (re-)compile the program. If not, just print the message

Program $exe is up-to-date. No need to recompile.

Either way, the program should continue, so no exit is needed here. After adding
this check, save the script and then run it to ensure that it’s working as expected.

7. The main goal of our script is to run the program named by $exe several times, once
for each of the input files. To achieve that, we need a loop.
So edit check again, adding a for loop. Use a new variable called input as the iter-
ation variable. Make the loop iterate over every file in the current directory whose
name ends with .in. Inside the loop, temporarily put an echo statement that prints
the value of input, so you can see that the loop is working correctly. After adding
this loop, save the script and then run it to ensure that it’s working as expected.

8. Next, let’s create shell variables for the names of the correct output file, the output file
that will be produced by the program we’re checking, and the differences between
those two files. Do that by adding lines like these inside your for loop:

correct_output=${input%.in}.out
program_output=${input%.in}.$exe.out
differences=${input%.in}.$exe.diff

This is another example of the parameter substitution pattern that we saw above.
Add these assignments to the body of the loop. Then save the script and then run it
to ensure that it’s working as expected.

csce215 Assignment 9 5 of 9

9. Now we are finally ready to run the program named by $exe. We want to redirect
standard input from $input and redirect standard output to $program_output, so the
command should look like this:

./$exe < $input > $program_output

Add this command inside the loop, and then save the script and then run it to ensure
that it’s working as expected.

10. Next, we need to check and see if the output produced by $exe is the same as the
correct output in the file named by $correct_output. To perform that check, we need
a command called diff, which is an important command for finding differences
between files (but which, somehow, has not come up earlier in the semester).

diff

Look for differences between files. Return code is 0 if the files are identical or
non-zero if the files differ.

So, for example, if two files a.txt and b.txt are identical but c.txt differs from both,
it works like this:

$ diff a.txt b.txt
$ echo $?
0

$ diff b.txt c.txt
1c1
< aaa

> ccc
$ echo $?
1

(Remember that $? refers to the return code of the previous command.) In the first
example, there is no output and the return code is 0, because the files are identical.
In the second example, differences between the files are shown and the return code
is 1.
Let’s use diff to compare the file named by $correct_output to the file named by
$program_output. If the files do differ, we want to capture the differences in a file
named by $differences. So the command to check for differences will be:

csce215 Assignment 9 6 of 9

diff $correct_output $program_output > $differences

Add this line to the end of the loop body in your script. Save the script and then run
it to ensure that it’s working as expected.

11. The last step is to print an appropriate message: If the program’s output is the same
as the correct output, we know that the programworked correctly. At the end of the
loop body, add a conditional that checks the return code of the diff command from
the previous step. You may want to check the lecture notes about the ‘simplest form
if statement’ to remind yourself of how to check the return code of a command. If
diff had a 0 return code, print

$input: Correct output

Otherwise, print

$input: Incorrect output

At this point, your check script should be complete, with all of the features shown in those
examples back on page 2. Run your script a few times to show that it can reproduce each
of the four examples exactly as they are shown there.

Create the check shell script described above. Execute it at least four
times, producing outputs identical to the four examples on page 2. (Hint:
You might need to do touch prog2.cpp or rm prog2 to force the script
to recompile, to get the Recompiling prog2.cpp message in the second
example.) 24 points

When you’ve verified that your script works as shown in those examples and is complete,
use cat to display its full contents into your recording. If you do not cat the completed
script into your recording, we will not be able to see it, and thus will not be able to
award credit for your work on it.

The green box below summarizes the features we’ll check for when grading your script.
It’s strongly recommended to use this as a checklist to verify that you’ve got things right
before submitting.

csce215 Assignment 9 7 of 9

Create a shell script called check within the otto directory. Use cat to
display it in the recording. The script should:

• Contain an appropriate interpreter directive on its first line. Be executablewithin
the otto directory using the command ./check .

• Assign a variable called cpp to the first command line argument.
• Use a -z primary expression to check whether cpp is an empty string. If $cpp is

an empty string, print the appropriate error message and quit.
• Use a -a primary expression to determine whether cpp refers to a file that exists.

If $cpp refers to a file that does not exist, print the appropriate error message and
quit. If $cpp refers to a file that does exist, print the appropriate happy message
and continue.

• Assign a variable called exe to be the same as $cpp, but with .cpp removed.
• Use a -nt primary expression to determine whether cpp refers to a newer file

than exe. If $cpp is newer than $exe or $exe does not exist, use the appropriate
g++ command to create $exe. In either case, print the appropriate message.

• Use a loop, with input as its iteration variable, over *.in.
• Within the loop, assign values to the shell variables correct_output,

program_output, and differences, as shown above.
• Within the loop, execute the program named by $exe, with input and output

redirected as shown above.
• Within the loop, use diff as shown above to compare the sample output to the

output produced by the program and capture the differences in a file named by
$differences.

• Within the loop, use the return code from diff to print an appropriate message,
showing whether the program worked correctly or incorrectly on $input.

68 points

csce215 Assignment 9 8 of 9

4 Done
Whew! That’s the end of the last assignment! Congratulations on learning quite a bit
about how to use UNIX- and Linux-like operating systems (and on setting the stage to
learn lots more in the future)!

As always, you should finish the recbash recording, check that your work is shown cor-
rectly in the transcript, and submit.

Upload your recording(s) and then submit.

And here’s one last batch of instructions for after you’ve submitted.

Prepare for the final exam by studying the practice exam
questions on the course website. Ace the final exam. This
summer, make good choices and have some fun!

csce215 Assignment 9 9 of 9

	Get started
	Your mission, should you choose to accept it
	Building the script
	Done

