csce215 — UNIX/Linux Fundamentals
Spring 2022 — Assignment 4

This assignment is intended to provide some practice and additional content for the
material covered in lecture on Monday, February 14. You'll use a variety of special
characters to specify command line arquments; compile, run, and debug a program us-
ing compound commands, and practice using command substitution. The assignment
is meant to be started in the lab sessions on Wednesday, February 16 and Thursday,
February 17. It must be submitted by 11:59pm on Sunday, February 20. A total of 92
points are available.

1 Get started

As usual, this for this assignment you’ll submit an recbash recording of your terminal ses-
sion completing the tasks below. So fire up the recording, create a assignment4 directory,
and navigate to it.

A

Use recbash to record your terminal session. Create new
directory called assignment4 to use for the tasks below, and
make your assignment4 directory the current directory.

The exercises below will rely on a collection of files stored in a shared directory here:
/class/215/assignment4

After making your new assignment4 directory the current directory, use cp to copy the
files there:

~

[cp -rv /class/215/assignment4/*

A

Copy everything from /class/215/assignment4 to your
own assignment4 directory using the command above.

J

1ot

/class/215/assignment4

2 Look at this mess!

Among the things you copied into your assignment4 directory is a subdirectory called
mess, which contains a very large number files with some strange names. Here are some
of them:
()

$ 1ls mess | head

aHz1-2950

AIIb-3051

AIT-90651

aNU-41803

alg-9197

a’z-780

AZp-5593

Azy-70827

bCwG-2373

BFBN-808

L J

Navigate to that directory and have a look at a full list of the file names.

Use cd to navigate to the mess directory and use 1s to see
its files. 3 points

Fortunately, there is some structure: The name of each file starts with some letters, fol-
lowed by a dash, then some numbers. We'll call that first part, consisting of letters, the
letters part and the last part, consisting of numbers, the numbers part.

Let’s use this directory to practice looking for certain groups of files. Also remember that
wc -1 (doubleyou sea dash ell) is a filter that outputs the number of lines in its standard
input. So, for example, 1s | wc -1 will output the number of files in the current directory.

Give commands that output a list of files in mess in each of the following groups. For each
one, you should find (a) a single command that outputs an exact list of the files asked for,
and (b) a second command that outputs the number of files in the list.!

1. All of the files.

2. Files whose letters part is Ia (and nothing else).

'Hint: For (a), use 1s with appropriate wildcards. Check your notes for some explanation and examples
of wildcards. Once you have completed (a), part (b) is easy: just pipe the output from (a) into wc -1.

csce215 Assignment 4 20ff]

Files whose letters part contains a lowercase z (and possibly other letters).
Files whose numbers part contains exactly three digits.
Files whose numbers part contains four or more digits.

Files whose letters part contains a lowercase o followed eventually by a lowercase j.

N Ok »

Files whose name contains both an uppercase V and the number 7.

To help you verify that you have correct commands, here are the counts you should expect
to see, not necessarily in order.

1 2 6 15 61 139 200

For each of the 7 groups listed above, give a single
command that outputs a list of files in mess in that group
and another command that outputs the number of files in
that group. 35 points

3 Fix this program

Next, navigate to the "pairs’ directory. This directory contains a C++ program written by
your instructor, whose job is to check whether the opening and closing parentheses and
braces in its input are balanced correctly. (If you have not yet worked with C++, don’t
worry. Completing this part does not rely on knowing C++.)

Unfortunately, the instructor has been sloppy and the program has a few errors. Let’s try
to compile it to see them. Here’s the command to compile a C++ program.

g++ EE)
Compile a C++ program.
-o name specify a name for the output executable E3

In this case, the source code is just one file called pairs.cpp and we want to create an
executable called pairs. So this command should do the job:

csce215 Assignment 4 3of[]

[g++ pairs.cpp -o pairs]

Then, if that’s successful, we can to run the program with this command:

[./pairs]

(The ./ part tells the shell to look for the program in the current directory, rather than its
usual search locations. We’ll learn more about this in the coming weeks.) Go ahead and
try it, issuing both commands on the same line, with && between them so that the second
command is executed only if the first is successful.

Give a single command that attempts to compile pairs.cpp
into an executable program called pairs, and then
executes that program only if the compiling step is
successful. 5 points

You should see quite a few compile errors. Let’s fix them. For each of the errors listed
below, use vim to correct the problem in pairs.cpp, and then use the same compile-and-
if-successful-then-run command as above to try it.

1. The first error complains about cin not being declared, and suggests doing some-
thing like #include <iostream>. To fix this, edit the file using vim and change the
first line of the file to include iostream instead of ostream.

Then quit vim and try the compile-and-if-successful-then-run command again. (You
might be tempted to try to fix the other errors as well, but that’s often a bad idea, be-
cause one problem can sometimes cause many different, seemingly unrelated com-
pile errors. So after fixing one problem, it can be helpful to compile again.)

A

Use vim to fix the typo on line 1 of pairs.cpp. Then save
and quit, and repeat the line that compiles and runs only if
the compile is successful. 7 points

2. The list of errors should be much shorter now. The next one complains about line 26.
This is supposed to be an if statement, but somehow the f is missing. Fix this and
then save, quit, and try to compile/run again.

csce215 Assignment 4 4 of []

A

Use vim to fix the typo on line 26 of pairs.cpp. Then save
and quit, and repeat the line that compiles and runs only if
the compile is successful. 7 points

3. Now the first error is a problem with line 43. This line is missing a colon and has a
< where it should have <<. Fix these two problems. The result should look similar
to line 44. Then save, quit, and try to compile/run again.

A

Use vim to fix the typos on line 43 of pairs.cpp. Then save
and quit, and repeat the line that compiles and runs only if
the compile is successful. 7 points

If you’ve made these corrections, the program should compile cleanly now and begin to
run. The program reads from standard input (i.e. your keyboard), after compiling is
tinished, so it may look at first as though the compiling is simply taking a long time.

Try it out by typing a line or two containing parentheses, square brackets, or curly brackets
along with any other characters you like. If each (matches eventually with a) and each
[matches with a], then the program should output ok at the end of standard input (i.e.
when you type Ctrl-D). If any of these pairs of grouping symbols matches with the wrong
partner or with nothing at all, you should see an error message.

So, does the program work correctly? (Spoiler alert: No. No, it does not.) There are
two files here that can help us check. One is called a. in, which has all of the parens and
braces correctly matched, so pairs should report success. The other is called b. in, which
has mismatches, so pairs should generate an error message about a mismatched symbol
report failure.

Let’s try a.in first. Add an input redirection to your previous command, so that it uses
a.in as the input to the pairs program. Then try the same with b. in.

A

Use input redirection at the end of the previous command,
instructing the shell to use a.in as the input for pairs.
Repeat for b. in. 9 points

Based on those outputs, it looks like something is wrong with the program: inb. in, there
are [characters that match with), but the program does not catch this. What could be
going wrong?

csce215 Assignment 4 5of[]

Aha! There’s a logic error in the program. On line 28, we have | | where we should have &3.
Use vim to correct that mistake. Repeat the two commands that run the program against
the a.inand b.in input files, confirming this time that a. in still generates an ok message,
and that b. in now correctly causes an error about mismatched symbols on line 1. Then
use cat pairs.cpp to show the fully-corrected program into your recording.

A

Use vim to correct the logic error on line 28 of pairs.cpp.
Repeat the two commands above: one that compiles and
runs with a.in as input, and another that compiles and
runs with b.in as input, showing the correct behavior
for each one. Use cat to show the now fully-corrected
pairs.cpp. 9 points

4 A very cool command

One last series of tasks: Let’s use command substitution —the technique of using the out-
put of one command to form arguments to another command— to find and copy a file
from one of the system directories.

The file we're looking for is an image in scalable vector graphics (SVG) format of a smiling
face with sunglasses. We know that the filename has the word ‘cool” in it and that it has
an svg extension, but we don’t know anything else about what the file is called nor where
the file might be.

Fortunately, there’s a program called locate for just this sort of situation.

locate

List files on the system matching a pattern.

For example, to find files related to the Java programming language, a command like

[locate java]

will list all of the files whose names or directories contain the word java, of which there
are quite a few.

In this case, we are interested in an SVG file containing ‘cool” in its name. So first, use
locate to find the file that we're looking for, that is, a file with an svg extension, whose

csce215 Assignment 4 6 of [

name contains the word cool. We just want to copy one single image file, so you'll need
a command that outputs a single line containing the full path to the cool SVG file we are
looking for. If you want, you can use pipes to process the output of locate. (Your system
probably has multiple copies of this file; any of them are OK.)

Use locate, optionally piped through one or more other
commands, to generate a single line of output. That line
should contain the path name of a file whose name contains
the word “cool” and whose extension is svg. 5 points

Now we can use that locate command in a command substitution —check the notes if
you need to remind yourself of the syntax— as part of another command that copies this
file to the current directory. So this should be a cp command where the source, i.e. the
tirst argument, comes from a command substitution of our locate command, and whose
destination is the current directory, i.e. a single period (.). To see the details of what is
being copied —that is, where we’re copying from and where we’re copying to— let’s use
the -v option to cp.

If this has worked correctly, you should be able to see the cool new file using 1s. Optionally,
if you'd like to see the file itself —It is an image, after all— you can use the eog command
to display it in a separate window.

Use cp -v, with a command substitution for the first
argument, to copy exactly one file, whose name contains
the word “cool” and whose extension is svg, to the current
directory. 5 points

5 Mission accomplished

That’s all for this time. As always, use Ctrl-D or exit to end your recording. Then con-
sider checking the transcript it to ensure that all of your work has been captured correctly.
Finally, upload to the Dropbox site and use the submit button to complete the process.

csce215 Assignment 4 7 of [

	Get started
	Look at this mess!
	Fix this program
	A very cool command
	Mission accomplished

